
June 2004 - Impure Sorcery

Buy us a cup of coffee?

This site is powered entirely by coffee. Coffee and love. Or is it that we
love coffee? Whatever.

We really do hate to have to ask and don't want to be a nag, but If you
would like to see good and helpful stuff continued to be offered, please
consider making a donation of any amount to help keep the coffee (and
the good stuff) coming!

To learn more about RoboHelp or Captivate, visit Udemy.com or
ShowMeSolutions.biz

Merry meet, fellow RoboNetizens!

What is this sorcery you say? Why, why, RoboWizard! You have tricked us! In your Who is this
RoboWizard? topic, you told us straight out that you weren't into such things!

Relax, take a chill pill, and allow the RoboWizard to elaborate on what is meant by "Impure
Sorcery". In this context, I am referring to a set of circumstances that seems to occur with alarming
frequency. This would be the most unfortunate circumstance of finding one's self in possession of
WebHelp output files as the only avenue to a RoboHelp HTML project.

Backups? We doan need no steenkin b@(kpppppppp.....____________________________
(End of line)

Even though I preach this time and again, things happen that cause one to be immersed in this
distressed state. I am not immune and found myself in such a state once. So even though you
may *THINK* you have a decent backup plan, things can sometimes go awry and foil your best
laid plans and efforts.

Personally, I discovered what worked best for my situation was to use WinZip and create a
complete copy of my project at the end of each workday. I would add everything except the !SSL!
folder, as this is easily re-created once you are back in business with your project. I then burned
the zip file to CD-ROM, using the date as a file name. For example: 04232004Backup.zip. I
would simply add the newest zip file each day until I filled the CD to capacity.

How to recover in the event of catastrophic failure

Assuming you have a good backup, you should easily be able to restore from it and merrily hum
along. However, odds are that you are reading this because the backup failed, or the source files
were lost or are somehow otherwise unavailable.

The main thing to do is not panic. Hang in there and we will get you through it. Yes, it likely won't
be a cake walk, but I assure you that it can be done, as I've done it myself.

Step 1. Analyze the existing WebHelp project

Odds are that you have a functional version of the WebHelp. This is a very good thing!
Your first step is to analyze it to see the folder structure (if any), the Table of Contents
structure, the Index terms used, the Glossary terms used and any Browse sequences
that have been defined. Your goal will be to duplicate these structures and terms in a new
RoboHelp HTML project. The main thing you need to remember is NOT to make any
changes to this version until you are absolutely certain you have successfully
duplicated the project!

Step 2. Create a new RoboHelp HTML project

Your goal here is to duplicate the folder structure (if any) of the existing WebHelp project.

Step 3. Add the existing WebHelp files back into the new RoboHelp HTML project

Yes, I'm all too aware that these are WebHelp Output files that have all sorts of extra
code in them. And yes, if you were to simply import these and run with them, lots of other
issues would result. However, as we have no backup source files, this will help keep from
re-creating the wheel.

Basically, you right click each folder and select Import from the context menu. Then
select the files for the folder and click the Open button.

*NOTE: At various points along the way you may encounter a dialog advising that one or
more files already exists and asking if you want to overwrite the file(s). Typically
this is the style sheet or possibly a JavaScript file. Either way, you are probably
safe with either choice.

Step 4. Separating the Wheat from the Chaff

Okay, look at all the progress we have made! Looks like you are almost home. But don't
think we are all *THAT* close. There is still much to be done. Once you have imported
the WebHelp topics into the source system, your task is to eradicate all the unwanted
JavaScript code. You may find yourself wondering why this is necessary. This is because
when WebHelp is generated, each source topic is massaged a bit. A small amount of

JavaScript code is added that helps the WebHelp output file survive in multiple browser
environments. So the first step is to open each topic in the RoboHelp HTML WYSIWYG
editor and delete all the red boxes you see.

Step 5. Using the fine-toothed comb to strip the scripts

Now that you have the easy part out of the way, you still have a bit of work ahead of you.
Step 4 simply removed the most easily found and obvious code. Your goal now is to visit
the TrueCode window and scrub the remaining bits of code. Basically you are on a
search and destroy mission. Look for anything beginning with <script>. Select from the
<script> to the closing </script> tags and delete them. Most of these will be found in the
Head area of the HTML document. So you may need to scroll up a tad to find them all. In
my example, there are seven additional script references to remove.

Step 6. Re-associating the style sheet

When you were stripping the scripts in Step 5, one script had a reference to your style
sheet. Actually, in my example, it was the first script on the page. Notice that a reference
was set initially to my stylesheet name_ns.css. This is a slightly modified version of my
"real" style sheet. My example uses a style sheet bearing the name of "styles.css". So
the initial hard coded reference is to styles_ns.css. So your goal is to ensure your actual
style sheet is part of the project, then change the reference from the _ns.css to just the
style sheet name. Realistically, RoboHelp HTML makes assigning style sheets so easy
within the application, that it's probably best to ignore the reference in TrueCode, then re-
associate the style sheet from within the RoboHelp HTML application. This step is
present simply to point out that the style sheet reference needs changing, and why.

Step 7. Re-establish DHTML

Why would we need to re-associate any DHTML? The simple answer is that if your
WebHelp topics included any DHTML effects (DHTML Drop Down areas, DHTML
Expanding Text, etc.) It's simply easier and more efficient to re-create these than it is to
sift through the existing scripting and make them work. This aspect is one of the reasons
that you don't want to change anything about the existing WebHelp files until you are
certain that everything has been restored.

Step 8. Re-creating the Table of Contents (TOC), Index, and Glossary

Again, as I stated above, this aspect is another of the reasons that you don't want to
change anything about the existing WebHelp files until you are certain that everything has
been restored. You will need to methodically step through each of the TOC, Index, and
Glossary items to ensure that everything is mapped satisfactorily.

Step 9. Re-creating the Browse Sequences

Yet again, as stated earlier, this aspect is just another of the reasons that you don't want
to change anything about the existing WebHelp files until you are certain that everything
has been restored. You will need to methodically step through each browse sequence to
ensure that everything is mapped satisfactorily.

Step 10. Re-creating any skins used

Fortunately, this one should be pretty simple. When you generate WebHelp using a skin,
all the associated files are present in the WebHelp output. They aren't modified, so it's a
simple matter to copy them to the appropriate location in your project.

That wraps it up for this month.

Until next month... Namaste and Merry part!

